MTAN: Multi-Time Attention Networks

For Irregularly Sampled Time Series

Satya Narayan Shukla, Benjamin Marlin

University of Massachusetts Amherst
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Irregularly Sampled Time Series
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Challenges

1. Irregular spacing between observation time points
2. Variable numbers of observations

3. Lack of alignment of observation time points



Contributions

- A flexible approach to modeling multivariate, sparse and
irregularly sampled time series data by leveraging a time
attention mechanism.
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Contributions

- A flexible approach to modeling multivariate, sparse and
irregularly sampled time series data by leveraging a time
attention mechanism.

- Our approach uses a temporally distributed latent
representation to better capture local structure in time series
data.

- Improved interpolation and classification performance than
current state-of-the-art methods with significantly reduced
training times.



i-Time Attention Networks

- Continuous-time interpolation-based models
S ma(t t) X(t)
>iko(t, 1)

where kg() is a similarity kernel, e.g. squared exponential
kernel'.

X(t)

1Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly sampled time series. In International
Conference on Learning Representations, 2019.



MTAN: Multi-Time Attention Networks

- Continuous-time interpolation-based models

. > kot t) x(t;)
X(t) = ="——"-—"""
0 = o et 6)
where kg() is a similarity kernel, e.g. squared exponential

kernel'.
- Continuous-time embedding coupled with Time Attention
- Replace the use of a fixed similarity kernel

- More representational flexibility than previous
interpolation-based models

1Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly sampled time series. In International

Conference on Learning Representations, 2019.



MTAN: Multi-Time Attention Networks
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mTAND output at given
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mTAND output at given
set of reference points

r=I[r,...,mx]

reference points

Irregularly sampled
multivariate time series

Lg
Xpa(t,s) = Zsoftmax <W) Xid

i=1
H D

mTAN(t, s)[J] = Z Z)A(hd(ta S)- Ungj
h=1 d=1

- mTAND (discretized mTAN) materializes mTAN’s output at a set of
reference time points 5



Encoder-Decoder Framework
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Encoder-Decoder Framework
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ESUD(97 7v,6) = Lnvae(6,7) + AEC]W(Z‘LS”) log ps(yn|z)



Interpolation Experiments: PhysioNet
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- L-ODE-RNN: Latent ODE with RNN encoder?.
- L-ODE-ODE: Latent ODE with ODE-RNN encoder?.

2T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equations. In Advances in Neural Information

Processing Systems. 2018,
Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud. Latent ordinary differential equations for irregularly-sampled time series. In Advances in

Neural Information Processing Systems. 2019.



Classification Experiments: PhysioNet



Classification Experiments: PhysioNet
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Thank You.

- Poster Session 2, 3™ May 2021, 9 am - 11 am PST.
- Code: https://github.com/reml-1lab/mTAN
- Paper: https://arxiv.org/pdf/2101.10318.pdf

- Contact: snshuklaacs.umass.edu



