For Irregularly Sampled Time Series

Satya Narayan Shukla, Benjamin Marlin

University of Massachusetts Amherst

Irregularly Sampled Time Series

Multivariate regularly sampled

Irregularly Sampled Time Series

Multivariate regularly sampled

Multivariate irregularly sampled(aligned)

Irregularly Sampled Time Series

Multivariate irregularly sampled (unaligned)

- 1. Irregular spacing between observation time points
- 2. Variable numbers of observations
- 3. Lack of alignment of observation time points

• A flexible approach to modeling multivariate, sparse and irregularly sampled time series data by leveraging a time attention mechanism.

- A flexible approach to modeling multivariate, sparse and irregularly sampled time series data by leveraging a time attention mechanism.
- Our approach uses a temporally distributed latent representation to better capture local structure in time series data.

- A flexible approach to modeling multivariate, sparse and irregularly sampled time series data by leveraging a time attention mechanism.
- Our approach uses a temporally distributed latent representation to better capture local structure in time series data.
- Improved interpolation and classification performance than current state-of-the-art methods with significantly reduced training times.

Continuous-time interpolation-based models

$$\hat{x}(t) = \frac{\sum_{i} \kappa_{\theta}(t, t_{i}) x(t_{i})}{\sum_{i} \kappa_{\theta}(t, t_{i})}$$

where κ_{θ} () is a similarity kernel, e.g. squared exponential kernel¹.

¹Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly sampled time series. In International Conference on Learning Representations, 2019.

Continuous-time interpolation-based models

$$\hat{x}(t) = \frac{\sum_{i} \kappa_{\theta}(t, t_{i}) x(t_{i})}{\sum_{i} \kappa_{\theta}(t, t_{i})}$$

where κ_{θ} () is a similarity kernel, e.g. squared exponential kernel¹.

- Continuous-time embedding coupled with Time Attention
- Replace the use of a fixed similarity kernel
- More representational flexibility than previous interpolation-based models

¹Satya Narayan Shukla and Benjamin Marlin. Interpolation-prediction networks for irregularly sampled time series. In International Conference on Learning Representations, 2019.

$$\hat{x}_{hd}(t, \mathbf{s}) = \sum_{i=1}^{L_d} \operatorname{softmax} \left(\frac{\phi_h(t) w v^T \phi_h(t_{id})^T}{\sqrt{d_k}} \right) x_{id}$$

$$\begin{aligned} \hat{x}_{hd}(t, \mathbf{s}) &= \sum_{i=1}^{L_d} \operatorname{softmax} \left(\frac{\phi_h(t) \mathsf{w} \mathsf{v}^{\mathsf{T}} \phi_h(t_{id})^{\mathsf{T}}}{\sqrt{d_k}} \right) \mathsf{x}_{id} \\ \phi_h(t)[i] &= \begin{cases} \omega_{0h} \cdot t + \alpha_{0h}, & \text{if } i = 0\\ \sin(\omega_{ih} \cdot t + \alpha_{ih}), & \text{if } 0 < i < d_r \end{cases} \end{aligned}$$

$$mTAN(t, \mathbf{s})[j] = \sum_{h=1}^{H} \sum_{d=1}^{D} \hat{x}_{hd}(t, \mathbf{s}) \cdot U_{hdj}$$

 mTAND (discretized mTAN) materializes mTAN's output at a set of reference time points

Encoder-Decoder Framework

Encoder-Decoder Framework

Encoder-Decoder Framework

- L-ODE-RNN: Latent ODE with RNN encoder².
- L-ODE-ODE: Latent ODE with ODE-RNN encoder³.

²T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equations. In Advances in Neural Information Processing Systems. 2018.

³Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud. Latent ordinary differential equations for irregularly-sampled time series. In Advances in Neural Information Processing Systems. 2019.

Classification Experiments: PhysioNet

Classification Experiments: PhysioNet

Thank You.

- Poster Session 2, 3^{rd} May 2021, 9 am 11 am PST.
- · Code: https://github.com/reml-lab/mTAN
- Paper: https://arxiv.org/pdf/2101.10318.pdf
- · Contact: snshukla@cs.umass.edu