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Introduction
Problem: Learning from sparse and irregularly sampled multivariate
time series.
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Multivariate regularly (left) and irregularly (right) sampled time series

Challenges:
• Irregular spacing between observation time points
•Variable numbers of observations
•Lack of alignment of observation time points
Contributions:
•Proposed a flexible approach to modeling sparse and irregularly
sampled time series data by leveraging a time attention mechanism.
•Temporally distributed latent representation to better capture local
structure in time series data.
• Improved interpolation and classification performance current SOTA
methods, while providing significantly reduced training times.
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•mTANs produce a fixed dimensional representation by performing
a scaled dot product attention over the observed values using the
time embedding of the query and key time points.
•mTAND materializes mTAN’s output at a set of query time points.
•More representational flexibility than previous interpolation models.
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Learning:
•We follow a slightly modified VAE training and maximize the
normalized variational lower bound on the log marginal likelihood.
LNVAE(θ, γ) = N∑

n=1
1

∑
dLdn

Eqγ(z|r,sn)[log pθ(xn|z, tn)]−DKL(qγ(z|r, sn)||p(z))


•We augment the model with a supervised learning component that
leverages the latent states as a feature extractor.

Lsupervised(θ, γ, δ) = LNVAE(θ, γ) + λEqγ(z|r,sn) log pδ(yn|z)

•Final predictions of supervised model are computed by marginalizing
over the latent variable: y∗ = arg maxy∈Y Eqγ(z|r,s)[log pδ(y|z)]

Experiments
Datasets: Experiments on 3 real-world data sets.

Task Dataset Size Dimension +ive labels
Interpolation PhysioNet 8000 41 −

Classification
PhysioNet 4000 41 13.8%
MIMIC-III 53211 12 8.1%

Human activity 6554 12 −
Protocols:
•We randomly divide the data set into a training set (80% ) and a
test set (20%). We use 20% of the training data for validation.
• In the interpolation task, we condition on a subset of available points
and predict values for rest of the time points.
•PhysioNet and MIMIC-III problems are whole time series
classification problems.
•Human activity problem is a multi-class classification problem
focused on classifying each time point in the time series.
•We repeat each experiment five times using different random seeds
to initialize the model parameters.

Models
We compare to several baselines and current SOTA methods:
•GRU-D: combining hidden state decay with input decay [1].
•Phased-LSTM: Captures time irregularity by a time gate [4].
• IP-Nets: Interpolation prediction networks followed by a GRU [6].
•SeFT: Set function based approach [3].
•ODE-RNN: Neural ODE to model hidden state dynamics [5].
•L-ODE-RNN: Latent ODE with RNN encoder [2].
•L-ODE-ODE: Latent ODE with ODE-RNN encoder [5].

Interpolation Results

Interpolation experiments with observed points varying from 50% to 90%
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Classification Results
Classification performance vs run time per epoch on PhysioNet
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Classification Performance on MIMIC-III dataset
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Classification Performance on Human Activity dataset
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