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Introduction Learning Objective

Problem: We consider the problem of learning supervised machine learning
models for sparse and irregularly sampled multivariate time series.

Experiments: Multivariate Data

Our experiments are based on the publicly available MIMIC-I1Il dataset.

The parameters of the interpolation-prediction network are learned end-to-end via
a composite objective function consisting of supervised and unsupervised

Classification: In-hospital mortality prediction
components.
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Gaussian process, but remove the restrictions associated with the need for a
positive definite covariance matrix.

4. Our approach is fully modular as in any standard deep learning network for fixed
length inputs can be used as prediction network.
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Regression: Length of stay prediction
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Quality of Interpolation

Median Absolute Error Explained Variance

Output of interpolation network on UWave dataset:
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Interpolation Network Prediction Network

Interpolation Network interpolates the multivariate, sparse, and irregularly
sampled input time series against a set of reference time points r = [ry, ..., r1].

Transients + Cross-channel
Transients + Cross-channel

Ablation Study

We conduct a set of ablation experiments of the internal structure of the
interpolation network using all subsets of outputs.
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Output of interpolation network :- | We use the first 48 hours of data for the prediction tasks.
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