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Original Image q 9 Adversarial Image
Label: wolf adeEaeeiiibaton Label: shower curtain

- Attack Goal: Untargeted and Targeted
- Distance Metrics: 4, £
- Threat Model: White-box and Black-box
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Contributions

- We propose Bayes Attack , a hard label black-box adversarial
attack method in low query budget regimes.

- Our proposed method uses Bayesian optimization for finding
adversarial perturbations in low dimension subspace.

- Our proposed approach achieves higher attack success rate
compared to the current state-of-the-art methods while
requiring much fewer queries.
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Problem Formulation

- Notations

- Target Model F: RY — {1,...K}
- original image x € R?

- Original labely € {1,...,K}

- Perturbation §

- Distance threshold ¢

- Objective
max f(x, y, 9)
subjectto [|d]|, < e and (x+ &) € [0,1]¢,

0 ifF(x+6
where flxy,8) = {—1 ;ngiaifi
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Bayesian Optimization

- A black-box optimization method particularly suited to problems
with low dimension and expensive queries

- Consists of a surrogate model and an acquisition function

05
2} Gaussian process posterior on the objective function Acquisition Function

- Gaussian Processes as the surrogate model.
- Expected Improvement as the acquisition function.

- Running BO over high dimensional inputs such as ImageNet (3 x
299 x 299) practically infeasible
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Low Dimensional Subspace for ¢,

- Bayes Attack utilizes low-frequency FFT basis vectors to generate
¢, norm constrained adversarial perturbations.

d—1d—1

FFT:  X[u,V] . ZZX[I} exp{ j%r(u.ﬂrv-j)}

i=0 j=0

d—
IFFT:  X[i,)] = ! ZZX[U v] exp {j—(u i+v- ])}

U:O v=0

- Equivalent norm: ||x||, = [[FFT(X)||,, [|X]|, = [[IFFT(X)]|,

- To allow only low-frequencies, the top-left |rd]| x |rd], r € (0,1]
square of X have nonzero entries

r ) .




Low Resolution Subspace for /.,

- Bayes Attack utilizes spatial local similarity in images to
generate /,, norm constrained adversarial perturbations.



Low Resolution Subspace for

- Bayes Attack utilizes spatial local similarity in images to
generate /,, norm constrained adversarial perturbations.

- We search for perturbations in a lower resolution image space
[rd] x |rd],r € (0,1] and use nearest neighbor interpolation.

- Equivalent norms: |X|| . = [[NNI(X)

[

i NNI
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Experiments

- Untargeted and targeted attacks

- ¢, and /, threat models

- MNIST, CIFAR-10 - 4 convolution and 2 fully-connected layers
- ImageNet - ResNet50, VGG16-bn, Inception-v3

- Compare with Boundary attack?, OPT3, Sign-OPT* and HSJA®
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ted 7/, attacks on Image

e = 0.05, Query budget = 1000

ResNet50 Inception-v3 VGG16-bn
Method success  avg. query | success  avg. query | success  avg. query
OPT attack 5.73 246.31 2.87 332.17 7.53 251.21
Sign-OPT 10.31 660.37 7.51 706.3 15.85 666.87

Bayes attack 67.48 45.94 44.29 72.31 78.47 33.7

1



Untargeted /., attacks on MNIST and CIFAR-10

MNIST (e = 0.3) and CIFAR-10 (e = 0.05), Query budget = 1000.

Method MNIST CIFAR-10
success avg. query success avg. query

OPT attack 291 657.93 12.55 271.24

Sign-OPT 7.02 682.36 31.87 679.39

Bayes attack  90.35 27.56 70.38 75.88




Targeted /., attacks on MNIST and CIFAR-10

MNIST (e = 0.3) and CIFAR-10 (e = 0.1), Query budget = 1000.

Method MNIST CIFAR-10
success avg. query success avg. query

OPT attack 0.0 — 0.0 —

Sign-OPT 2.41 975.67 3.50 937.65

Bayes attack  26.23 130.03 48.93 14915




Untargeted ¢, attacks on ImageNet

—— Boundary attack OPT attack —— HSJA —— Sign-OPT —— Bayes attack
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Query Efficiency Comparison
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Query Efficiency Comparison
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Low Dimension Subspaces

Performance comparison of FFT basis vectors and random vectors sampled
from the standard normal distribution for ¢, attack with e = 20.0 on

ResNet50.
Basis Success Avg Queries
Cosine FFT 64.38% 54.25
Sine FFT 63.74% 45.72
Cosine and sine FFT  66.67% 54.97

Standard Normal 33.33% 48.25

16
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Conclusions

- We consider the problem of hard-label black-box adversarial
attacks in low query budget regimes which is an important
practical consideration.

- We show that BO presents as a scalable, query-efficient
alternative for black-box adversarial attacks when combined
with searching in structured low dimensional subspaces.

- We successfully demonstrate the efficacy of our method in
attacking multiple deep learning architectures in both
untargeted and targeted settings, and /., and ¢, norms.



Thank You.

- Poster Session: 18" August 2021, 05:30 pm - 08:30 pm EST
- Code: https://github.com/satyanshukla/bayes_attack
- Paper: https://arxiv.org/pdf/2007.07210.pdf

- Contact: snshuklancs.umass.edu



