Simple and Efficient Hard Label Black-box Adversarial Attacks in Low Query Budget Regimes

Satya Narayan Shukla¹

Joint work with Anit Kumar Sahu², Devin Willmott³, Zico Kolter^{3,4}

¹University of Massachusetts Amherst, ²Amazon Alexa AI, ³Bosch Center for AI, ⁴Carnegie Mellon University

Original Image Label: wolf

+

Adversarial Perturbation

Adversarial Image Label: shower curtain

Original Image Label: wolf

Adversarial Image Label: shower curtain

Attack Goal: Untargeted and Targeted

- · Attack Goal: Untargeted and Targeted
- Distance Metrics: ℓ_2, ℓ_∞

- Attack Goal: Untargeted and Targeted
- · Distance Metrics: ℓ_2, ℓ_∞
- Threat Model: White-box and Black-box

¹picture taken from Chen et al. (2019)

• White-box Attacks

¹picture taken from Chen et al. (2019)

- White-box Attacks
- Score-based Black-box Attacks (Soft Label)

¹picture taken from Chen et al. (2019)

- White-box Attacks
- Score-based Black-box Attacks (Soft Label)
- · Decision-based Black-box Attacks (hard label)

picture taken from Chen et al. (2019)

• We propose *Bayes Attack*, a hard label black-box adversarial attack method in low query budget regimes.

- We propose *Bayes Attack* , a hard label black-box adversarial attack method in low query budget regimes.
- Our proposed method uses Bayesian optimization for finding adversarial perturbations in low dimension subspace.

- We propose *Bayes Attack* , a hard label black-box adversarial attack method in low query budget regimes.
- Our proposed method uses Bayesian optimization for finding adversarial perturbations in low dimension subspace.
- Our proposed approach achieves higher attack success rate compared to the current state-of-the-art methods while requiring much fewer queries.

Problem Formulation

\cdot Notations

- Target Model $F : \mathbb{R}^d \to \{1, \dots, K\}$
- original image $x \in \mathbb{R}^d$
- Original label $y \in \{1, \ldots, K\}$
- + Perturbation δ
- + Distance threshold ϵ

Problem Formulation

\cdot Notations

- Target Model $F : \mathbb{R}^d \to \{1, \dots, K\}$
- original image $x \in \mathbb{R}^d$
- Original label $y \in \{1, \ldots, K\}$
- + Perturbation δ
- + Distance threshold ϵ
- \cdot Objective

$$\max_{\delta} f(\mathbf{x}, y, \delta)$$

subject to $\|\delta\|_{p} \le \epsilon$ and $(\mathbf{x} + \delta) \in [0, 1]^{d}$
where $f(\mathbf{x}, y, \delta) = \begin{cases} 0 & \text{if } F(\mathbf{x} + \delta) \ne y \\ -1 & \text{if } F(\mathbf{x} + \delta) = y \end{cases}$

• A black-box optimization method particularly suited to problems with low dimension and expensive queries

- A black-box optimization method particularly suited to problems with low dimension and expensive queries
- Consists of a surrogate model and an acquisition function

- A black-box optimization method particularly suited to problems with low dimension and expensive queries
- Consists of a surrogate model and an acquisition function

- A black-box optimization method particularly suited to problems with low dimension and expensive queries
- · Consists of a surrogate model and an acquisition function

- A black-box optimization method particularly suited to problems with low dimension and expensive queries
- · Consists of a surrogate model and an acquisition function

• Gaussian Processes as the surrogate model.

- A black-box optimization method particularly suited to problems with low dimension and expensive queries
- · Consists of a surrogate model and an acquisition function

- Gaussian Processes as the surrogate model.
- Expected Improvement as the acquisition function.

- A black-box optimization method particularly suited to problems with low dimension and expensive queries
- · Consists of a surrogate model and an acquisition function

- · Gaussian Processes as the surrogate model.
- Expected Improvement as the acquisition function.
- Running BO over high dimensional inputs such as ImageNet (3 × 299 × 299) practically infeasible

Low Dimensional Subspace for ℓ_2

- Bayes Attack utilizes low-frequency FFT basis vectors to generate ℓ_2 norm constrained adversarial perturbations.

FFT:
$$X[u, v] = \frac{1}{d} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} x[i, j] \exp\left[-j\frac{2\pi}{d}(u \cdot i + v \cdot j)\right]$$

IFFT: $x[i, j] = \frac{1}{d} \sum_{u=0}^{d-1} \sum_{v=0}^{d-1} X[u, v] \exp\left[j\frac{2\pi}{d}(u \cdot i + v \cdot j)\right]$

Low Dimensional Subspace for ℓ_2

- Bayes Attack utilizes low-frequency FFT basis vectors to generate ℓ_2 norm constrained adversarial perturbations.

FFT:
$$X[u, v] = \frac{1}{d} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} x[i, j] \exp \left[-j \frac{2\pi}{d} (u \cdot i + v \cdot j) \right]$$

IFFT: $x[i, j] = \frac{1}{d} \sum_{u=0}^{d-1} \sum_{v=0}^{d-1} X[u, v] \exp \left[j \frac{2\pi}{d} (u \cdot i + v \cdot j) \right]$

- Equivalent norm: $\|\mathbf{x}\|_2 = \|\mathsf{FFT}(\mathbf{x})\|_2$, $\|\mathbf{X}\|_2 = \|\mathsf{IFFT}(\mathbf{X})\|_2$

Low Dimensional Subspace for ℓ_2

- Bayes Attack utilizes low-frequency FFT basis vectors to generate ℓ_2 norm constrained adversarial perturbations.

FFT:
$$X[u, v] = \frac{1}{d} \sum_{i=0}^{d-1} \sum_{j=0}^{d-1} x[i, j] \exp \left[-j \frac{2\pi}{d} (u \cdot i + v \cdot j) \right]$$

IFFT: $x[i, j] = \frac{1}{d} \sum_{u=0}^{d-1} \sum_{v=0}^{d-1} X[u, v] \exp \left[j \frac{2\pi}{d} (u \cdot i + v \cdot j) \right]$

- Equivalent norm: $\|\mathbf{x}\|_2 = \|\mathsf{FFT}(\mathbf{x})\|_2$, $\|\mathbf{X}\|_2 = \|\mathsf{IFFT}(\mathbf{X})\|_2$
- To allow only low-frequencies, the top-left $\lfloor rd \rfloor \times \lfloor rd \rfloor$, $r \in (0, 1]$ square of X have nonzero entries

- Bayes Attack utilizes spatial local similarity in images to generate ℓ_{∞} norm constrained adversarial perturbations.

Low Resolution Subspace for ℓ_∞

- Bayes Attack utilizes spatial local similarity in images to generate ℓ_∞ norm constrained adversarial perturbations.
- We search for perturbations in a lower resolution image space $\lfloor rd \rfloor \times \lfloor rd \rfloor, r \in (0, 1]$ and use nearest neighbor interpolation.
- + Equivalent norms: $\left\|\mathbf{X}\right\|_{\infty} = \left\|\mathsf{NNI}(\mathbf{X})\right\|_{\infty}$

- 1: **procedure** BAYES-ATTACK (x_0, y_0)
- 2: $\mathcal{D} = \{(\boldsymbol{\delta}_1, \boldsymbol{v}_1), \cdots, (\boldsymbol{\delta}_{n_0}, \boldsymbol{v}_{n_0})\}$

 \triangleright Quering randomly chosen n_0 points.

- 1: **procedure** BAYES-ATTACK (x_0, y_0)
- 2: $\mathcal{D} = \{(\boldsymbol{\delta}_1, \boldsymbol{v}_1), \cdots, (\boldsymbol{\delta}_{n_0}, \boldsymbol{v}_{n_0})\}$
- 3: Update the GP on \mathcal{D}
- 4: $t \leftarrow n_0$
- 5: while $t \le T$ do
- 6: $\delta_t \leftarrow \operatorname{arg\,max}_{\delta} \mathcal{A}(\delta \mid \mathcal{D})$

Quering randomly chosen n₀ points.
 Updating posterior distribution
 Updating number of queries

▷ Optimizing the acquisition function

10: $t \leftarrow t + 1$

- 11: **if** $v_t < 0$ **then**
- 12: $\mathcal{D} \leftarrow \mathcal{D} \cup (\delta_t, v_t)$ and update the GP \triangleright Updating posterior distribution

- 1: procedure BAYES-ATTACK (x_0, y_0)
- 2: $\mathcal{D} = \{(\boldsymbol{\delta}_1, \boldsymbol{v}_1), \cdots, (\boldsymbol{\delta}_{n_0}, \boldsymbol{v}_{n_0})\}$
- 3: Update the GP on \mathcal{D}
- 4: $t \leftarrow n_0$

7:

12:

- 5: while $t \le T$ do
- 6: $\boldsymbol{\delta}_t \leftarrow \operatorname{arg\,max}_{\boldsymbol{\delta}} \mathcal{A}(\boldsymbol{\delta} \mid \mathcal{D})$
 - $\boldsymbol{\delta}_t \leftarrow \boldsymbol{\Pi}^p_{B(\mathbf{0},\epsilon)}(\boldsymbol{\delta}_t)$
- 8: $\Delta_t \leftarrow map(\delta_t)$

9:
$$v_t \leftarrow f(\mathbf{x}_0, y_0, \boldsymbol{\Delta}_t)$$

10:
$$t \leftarrow t + 1$$

11: **if** $v_t < 0$ **then**

▷ Quering randomly chosen n₀ points.
 ▷ Updating posterior distribution
 ▷ Updating number of queries

▷ Optimizing the acquisition function
 ▷ Projecting perturbation on ℓ_p-ball
 ▷ Mapping perturbation to full input space
 ▷ Querying the model

 $\mathcal{D} \leftarrow \mathcal{D} \cup (\pmb{\delta}_t, \mathsf{v}_t)$ and update the GP $\,\,\triangleright\,$ Updating posterior distribution

1: procedure BAYES-ATTACK (x_0, y_0) $\mathcal{D} = \{(\boldsymbol{\delta}_1, \boldsymbol{v}_1), \cdots, (\boldsymbol{\delta}_{n_0}, \boldsymbol{v}_{n_0})\}$ 2: \triangleright Quering randomly chosen n_0 points. 3: Update the GP on \mathcal{D} ▷ Updating posterior distribution > Updating number of queries 4. $t \leftarrow n_0$ 5: while $t \leq T$ do 6. $\delta_t \leftarrow \arg \max_{\delta} \mathcal{A}(\delta \mid \mathcal{D})$ Optimizing the acquisition function $\boldsymbol{\delta}_t \leftarrow \Pi^p_{B(\mathbf{0},\epsilon)}(\boldsymbol{\delta}_t)$ 7: \triangleright Projecting perturbation on ℓ_p -ball 8: $\Delta_t \leftarrow map(\delta_t)$ ▷ Mapping perturbation to full input space $v_t \leftarrow f(\mathbf{x}_0, v_0, \boldsymbol{\Delta}_t)$ ▷ Querying the model g٠ 10: $t \leftarrow t + 1$ 11. if $v_t < 0$ then 12: $\mathcal{D} \leftarrow \mathcal{D} \cup (\delta_t, v_t)$ and update the GP \triangleright Updating posterior distribution 13. else return δ_t Adversarial attack successful 14:

1:	procedure BAYES-ATTACK (x_0, y_0)	
2:	$\mathcal{D} = \{(\boldsymbol{\delta}_1, v_1), \cdots, (\boldsymbol{\delta}_{n_0}, v_{n_0})\}$	\triangleright Quering randomly chosen n_0 points.
3:	Update the GP on ${\cal D}$	Updating posterior distribution
4:	$t \leftarrow n_0$	Updating number of queries
5:	while $t \leq T$ do	
6:	$oldsymbol{\delta}_t \gets argmax_{oldsymbol{\delta}} \mathcal{A}(oldsymbol{\delta} \mid \mathcal{D})$	 Optimizing the acquisition function
7:	$\boldsymbol{\delta}_t \leftarrow \Pi^p_{B(0,\epsilon)}(\boldsymbol{\delta}_t)$	\triangleright Projecting perturbation on ℓ_p -ball
8:	$\boldsymbol{\Delta}_t \leftarrow map(\boldsymbol{\delta}_t)$	▷ Mapping perturbation to full input space
9:	$v_t \leftarrow f(\mathbf{x}_0, y_0, \mathbf{\Delta}_t)$	⊳ Querying the model
10:	$t \leftarrow t + 1$	
11:	if $v_t < 0$ then	
12:	$\mathcal{D} \leftarrow \mathcal{D} \cup (oldsymbol{\delta}_t, v_t)$ and upd	ate the GP ▷ Updating posterior distribution
13:	else	
14:	return $oldsymbol{\delta}_t$	Adversarial attack successful
15:	return δ_t	Adversarial attack unsuccessful

```
1: procedure BAYES-ATTACK(x_0, y_0)
          \mathcal{D} = \{(\boldsymbol{\delta}_1, \boldsymbol{v}_1), \cdots, (\boldsymbol{\delta}_{n_0}, \boldsymbol{v}_{n_0})\}
 2:
                                                                        \triangleright Quering randomly chosen n_0 points.
 3:
       Update the GP on {\cal D}
                                                                                  ▷ Updating posterior distribution
                                                                                      > Updating number of queries
 4.
        t \leftarrow n_0
 5:
          while t < T do
 6.
               \delta_t \leftarrow \arg \max_{\delta} \mathcal{A}(\delta \mid \mathcal{D})
                                                                       Optimizing the acquisition function
               \boldsymbol{\delta}_t \leftarrow \Pi^p_{B(0,\epsilon)}(\boldsymbol{\delta}_t)
 7:
                                                                             \triangleright Projecting perturbation on \ell_p-ball
 8:
               \Delta_t \leftarrow map(\delta_t)
                                                                   ▷ Mapping perturbation to full input space
              v_t \leftarrow f(\mathbf{x}_0, v_0, \boldsymbol{\Delta}_t)
                                                                                                   ▷ Querying the model
 g٠
10:
         t \leftarrow t + 1
11.
        if v_t < 0 then
12:
                     \mathcal{D} \leftarrow \mathcal{D} \cup (\delta_t, v_t) and update the GP \triangleright Updating posterior distribution
13.
               else
                     return \delta_t
                                                                                     Adversarial attack successful
14:
15:
          return \delta_t
                                                                                 Adversarial attack unsuccessful
```


Untargeted and targeted attacks

- $\cdot\,$ Untargeted and targeted attacks
- + ℓ_2 and ℓ_∞ threat models

- Untargeted and targeted attacks
- + ℓ_2 and ℓ_∞ threat models
- MNIST, CIFAR-10 4 convolution and 2 fully-connected layers
- ImageNet ResNet50, VGG16-bn, Inception-v3

- Untargeted and targeted attacks
- + ℓ_2 and ℓ_∞ threat models
- MNIST, CIFAR-10 4 convolution and 2 fully-connected layers
- ImageNet ResNet50, VGG16-bn, Inception-v3
- Compare with Boundary attack², OPT³, Sign-OPT⁴ and HSJA⁵

²Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2017. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248 (2017).

³ Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. 2019. Query-efficient hard-label black-box attack: An optimization-based approach. In International Conference on Learning Representations.

⁴ Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. 2020. Sign-OPT: A Query-Efficient Hard-label Adversarial Attack. In International Conference on Learning Representations.

⁵ Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. 2019. HopSkipJumpAttack: A Query-Efficient Decision-Based Attack. ArXiv abs/1904.02144 (2019).

 $\epsilon =$ 0.05, Query budget = 1000

	ResNet50		Inception-v3		VGG16-bn	
Method	success	avg. query	success	avg. query	success	avg. query
OPT attack	5.73	246.31	2.87	332.17	7.53	251.21
Sign-OPT	10.31	660.37	7.51	706.3	15.85	666.87
Bayes attack	67.48	45.94	44.29	72.31	78.47	33.7

MNIST ($\epsilon = 0.3$) and CIFAR-10 ($\epsilon = 0.05$), Query budget = 1000.

Method	MNIST		CIFAR-10		
	success	avg. query	success	avg. query	
OPT attack	2.91	657.93	12.55	271.24	
Sign-OPT	7.02	682.36	31.87	679.39	
Bayes attack	90.35	27.56	70.38	75.88	

MNIST ($\epsilon = 0.3$) and CIFAR-10 ($\epsilon = 0.1$), Query budget = 1000.

Method	MNIST		CIFAR-10		
	success	avg. query	success	avg. query	
OPT attack	0.0	_	0.0	_	
Sign-OPT	2.41	975.67	3.50	937.65	
Bayes attack	26.23	130.03	48.93	149.15	

Untargeted ℓ_2 attacks on ImageNet

Query Efficiency Comparison

(a) MNIST

Query Efficiency Comparison

Performance comparison of FFT basis vectors and random vectors sampled from the standard normal distribution for ℓ_2 attack with $\epsilon = 20.0$ on ResNet50.

Basis	Success	Avg Queries
Cosine FFT	64.38%	54.25
Sine FFT	63.74%	45.72
Cosine and sine FFT	66.67%	54.97
Standard Normal	33.33%	48.25

• We consider the problem of hard-label black-box adversarial attacks in low query budget regimes which is an important practical consideration.

- We consider the problem of hard-label black-box adversarial attacks in low query budget regimes which is an important practical consideration.
- We show that BO presents as a scalable, query-efficient alternative for black-box adversarial attacks when combined with searching in structured low dimensional subspaces.

- We consider the problem of hard-label black-box adversarial attacks in low query budget regimes which is an important practical consideration.
- We show that BO presents as a scalable, query-efficient alternative for black-box adversarial attacks when combined with searching in structured low dimensional subspaces.
- We successfully demonstrate the efficacy of our method in attacking multiple deep learning architectures in both untargeted and targeted settings, and ℓ_{∞} and ℓ_2 norms.

Thank You.

- Poster Session: 18th August 2021, 05:30 pm 08:30 pm EST
- · Code: https://github.com/satyanshukla/bayes_attack
- Paper: https://arxiv.org/pdf/2007.07210.pdf
- · Contact: snshukla@cs.umass.edu