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Adversarial Attacks

+
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Label: shower curtain
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• Attack Goal: Untargeted and Targeted
• Distance Metrics: ℓ2, ℓ∞
• Threat Model: White-box and Black-box
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Threat Model

Wolf

1

• White-box Attacks
• Score-based Black-box Attacks (Soft Label)
• Decision-based Black-box Attacks (hard label)

1picture taken from Chen et al. (2019)
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Contributions

• We propose Bayes Attack , a hard label black-box adversarial
attack method in low query budget regimes.

• Our proposed method uses Bayesian optimization for finding
adversarial perturbations in low dimension subspace.

• Our proposed approach achieves higher attack success rate
compared to the current state-of-the-art methods while
requiring much fewer queries.
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Problem Formulation

• Notations
• Target Model F : Rd → {1, . . . K}
• original image x ∈ Rd

• Original label y ∈ {1, . . . , K}
• Perturbation δ

• Distance threshold ϵ

• Objective

max
δ

f(x, y, δ)

subject to ∥δ∥p ≤ ϵ and (x+ δ) ∈ [0, 1]d,

where f(x, y, δ) =
{
0 if F(x+ δ) ̸= y
−1 if F(x+ δ) = y
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Bayesian Optimization

• A black-box optimization method particularly suited to problems
with low dimension and expensive queries

• Consists of a surrogate model and an acquisition function

• Gaussian Processes as the surrogate model.
• Expected Improvement as the acquisition function.
• Running BO over high dimensional inputs such as ImageNet (3 ×
299 × 299) practically infeasible
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Low Dimensional Subspace for ℓ2

• Bayes Attack utilizes low-frequency FFT basis vectors to generate
ℓ2 norm constrained adversarial perturbations.

FFT: X[u, v] = 1
d

d−1∑
i=0

d−1∑
j=0

x[i, j] exp
[
−j 2π

d
(u · i+ v · j)

]

IFFT: x[i, j] = 1
d

d−1∑
u=0

d−1∑
v=0

X[u, v] exp
[
j 2π
d

(u · i+ v · j)
]

• Equivalent norm: ∥x∥2 = ∥FFT(x)∥2, ∥X∥2 = ∥IFFT(X)∥2
• To allow only low-frequencies, the top-left ⌊rd⌋ × ⌊rd⌋, r ∈ (0, 1]
square of X have nonzero entries

IFFT
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Low Resolution Subspace for ℓ∞

• Bayes Attack utilizes spatial local similarity in images to
generate ℓ∞ norm constrained adversarial perturbations.

• We search for perturbations in a lower resolution image space
⌊rd⌋ × ⌊rd⌋, r ∈ (0, 1] and use nearest neighbor interpolation.

• Equivalent norms: ∥X∥∞ = ∥NNI(X)∥∞

NNI
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Bayes Attack

Algorithm Black-box Adversarial Attack using Bayesian Optimization

1: procedure BAYES-ATTACK(x0, y0)
2: D = {(δ1, v1), · · · , (δn0 , vn0 )} ▷ Quering randomly chosen n0 points.

3: Update the GP on D ▷ Updating posterior distribution
4: t← n0 ▷ Updating number of queries
5: while t ≤ T do
6: δt ← argmaxδ A(δ | D) ▷ Optimizing the acquisition function
7: δt ← Πp

B(0,ϵ)(δt) ▷ Projecting perturbation on ℓp-ball
8: ∆t ← map(δt) ▷ Mapping perturbation to full input space
9: vt ← f(x0, y0,∆t) ▷ Querying the model
10: t← t+ 1
11: if vt < 0 then
12: D ← D ∪ (δt, vt) and update the GP ▷ Updating posterior distribution
13: else
14: return δt ▷ Adversarial attack successful
15: return δt ▷ Adversarial attack unsuccessful
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Bayes Attack
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Experiments

• Untargeted and targeted attacks

• ℓ2 and ℓ∞ threat models
• MNIST, CIFAR-10 - 4 convolution and 2 fully-connected layers
• ImageNet - ResNet50, VGG16-bn, Inception-v3
• Compare with Boundary attack2, OPT3, Sign-OPT4 and HSJA5

2Wieland Brendel, Jonas Rauber, and Matthias Bethge. 2017. Decision-based adversarial attacks: Reliable attacks against black-box
machine learning models. arXiv preprint arXiv:1712.04248 (2017).
3Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui Hsieh. 2019. Query-efficient hard-label black-box attack: An
optimization-based approach. In International Conference on Learning Representations.
4Minhao Cheng, Simranjit Singh, Patrick H. Chen, Pin-Yu Chen, Sijia Liu, and Cho-Jui Hsieh. 2020. Sign-OPT: A Query-Efficient Hard-label
Adversarial Attack. In International Conference on Learning Representations.
5 Jianbo Chen, Michael I. Jordan, and Martin J. Wainwright. 2019. HopSkipJumpAttack: A Query-Efficient Decision-Based Attack. ArXiv
abs/1904.02144 (2019).
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Untargeted ℓ∞ attacks on ImageNet

ϵ = 0.05, Query budget = 1000

ResNet50 Inception-v3 VGG16-bn
Method success avg. query success avg. query success avg. query

OPT attack 5.73 246.31 2.87 332.17 7.53 251.21
Sign-OPT 10.31 660.37 7.51 706.3 15.85 666.87
Bayes attack 67.48 45.94 44.29 72.31 78.47 33.7
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Untargeted ℓ∞ attacks on MNIST and CIFAR-10

MNIST (ϵ = 0.3) and CIFAR-10 (ϵ = 0.05), Query budget = 1000.

Method MNIST CIFAR-10
success avg. query success avg. query

OPT attack 2.91 657.93 12.55 271.24
Sign-OPT 7.02 682.36 31.87 679.39
Bayes attack 90.35 27.56 70.38 75.88
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Targeted ℓ∞ attacks on MNIST and CIFAR-10

MNIST (ϵ = 0.3) and CIFAR-10 (ϵ = 0.1), Query budget = 1000.

Method MNIST CIFAR-10
success avg. query success avg. query

OPT attack 0.0 − 0.0 −
Sign-OPT 2.41 975.67 3.50 937.65
Bayes attack 26.23 130.03 48.93 149.15
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Untargeted ℓ2 attacks on ImageNet

Boundary attack OPT attack HSJA Sign-OPT Bayes attack
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(a) ResNet50, ϵ = 5.0
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(b) Inception-v3, ϵ = 5.0
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(c) VGG16-bn, ϵ = 5.0

0 200 400 600 800 1000

Query Budget

0

10

20

30

40

50

S
u

cc
es

s
ra

te

(d) ResNet50, ϵ = 10.0
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(e) Inception-v3, ϵ = 10.0
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(f) VGG16-bn, ϵ = 10.0
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(g) ResNet50, ϵ = 20.0
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(h) Inception-v3, ϵ = 20.0
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Query Efficiency Comparison
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Low Dimension Subspaces

Performance comparison of FFT basis vectors and random vectors sampled
from the standard normal distribution for ℓ2 attack with ϵ = 20.0 on
ResNet50.

Basis Success Avg Queries

Cosine FFT 64.38% 54.25
Sine FFT 63.74% 45.72

Cosine and sine FFT 66.67% 54.97
Standard Normal 33.33% 48.25
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Conclusions

• We consider the problem of hard-label black-box adversarial
attacks in low query budget regimes which is an important
practical consideration.

• We show that BO presents as a scalable, query-efficient
alternative for black-box adversarial attacks when combined
with searching in structured low dimensional subspaces.

• We successfully demonstrate the efficacy of our method in
attacking multiple deep learning architectures in both
untargeted and targeted settings, and ℓ∞ and ℓ2 norms.
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Thank You.
• Poster Session: 18th August 2021, 05:30 pm - 08:30 pm EST

• Code: https://github.com/satyanshukla/bayes_attack
• Paper: https://arxiv.org/pdf/2007.07210.pdf
• Contact: snshukla@cs.umass.edu
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