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• Adversarial images, typically generated by modifying standard images
with low norm perturbations can “fool” deep neural networks

• A potential reason for this is that decision boundaries of neural
networks are unconstrained away from the training data manifold

• Bayesian neural networks (BNNs) can be better behaved away from
training data due to the Bayesian model averaging effect.

• In this work, we analyze the adversarial robustness of Markov Chain
Monte Carlo (MCMC) based BNNs and their distilled counterparts

Introduction
• Datasets: MNIST (60k training, 10k test) and CIFAR10 (50k training, 

10k test)

• Models: 4-layer and 5-layer convolutional neural networks (CNNs) for 
MNIST and CIFAR10 respectively
• MNIST: Input(1, (28,28)) - Conv(num_kernels=10, kernel_size=4, 

stride=1) - MaxPool(kernel_size=2) - Conv(num_kernels=20, 
kernel_size=4, stride=1) - MaxPool(kernel_size=2) - FC (80) - FC 
(output)

• CIFAR10:  Input(3, (32,32)) - Conv(num_kernels=16, 
kernel_size=5) - MaxPool(kernel_size=2) - Conv(num_kernels=32, 
kernel_size=5) - MaxPool(kernel_size=2) - FC(200) - FC (50) - FC 
(output)

• During BDK distillation, we apply a zero-mean and fixed variance 
Gaussian noise to the input training data. We also assess performance 
against variance levels. 

Background

• For implementing BNNs, we utilize Stochastic Gradient Langevin

Dynamics (SGLD) (Welling & Teh, 2011), a SG-MCMC algorithm to

sample from the approximate posterior distribution

• However, MCMC based methods require storing parameter sets

sampled from the posterior to be used during inference

• Bayesian Dark Knowledge (BDK) (Balan et al., 2015) proposes an

online method of distilling the posterior predictive distribution of the

Bayesian ensemble (teacher) into a smaller compact model

(student). This is achieved by minimizing the KL-divergence between

the teacher and the student

• Adversarial attacks on ensembles can present a challenge in terms

of memory requirements. We circumvent this by sampling one model

at a time and accumulating gradients as shown below.

Methods

Experimental Results 

• Adversarial attacks are typically either white-box (access to the
underlying objective function) or black-box (query access only)

• In our work, we focus on two popular kinds of white-box attacks:
• Fast Gradient Sign Method (FGSM) (Goodfellow et al, 2014): Take

an 𝝐-step against the loss gradient in the 𝐿∞ space

• Projected Gradient Method (PGD) (Madry et al., 2017): Iterative
version of FGSM attack maintaining the 𝐿∞ perturbations

• Classical Bayesian inference requires computing the posterior
distribution over parameters, and subsequently marginalizing over the
posterior to obtain the posterior predictive distribution

• The posterior term is intractable for neural networks. Thus,
approximations like variational inference (VI) or MCMC are used

• VI provides a biased but low-variance approximation, while MCMC
methods provides an unbiased and high-variance approximation

Experimental Protocols

• MCMC based Bayesian ensembles show excellent robustness to
adversarial attacks compared to standard point-estimated models

• Under BDK, the student models show improved robustness when
compared to point-estimated models, but not at the level of full
Bayesian ensembles using MCMC

• Increasing noise during BDK distillation helps improve adversarial
robustness of the student, but comes at a cost of reduced accuracy on
non-adversarial inputs

• Future work includes further investigation of BDK's posterior predictive
distribution representation and a focus on improving adversarial
robustness to match the level of full Bayesian ensembles

Discussion and Future Work
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