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Abstract— Blood pressure (BP) is one of the most important
physiological parameter that can provide crucial information
for health care. The widely used cuff based technology is
not very convenient or comfortable as it occludes the blood
flow in the arteries during the time of measurement. In the
past, Phonocardiogram (PCG), Electrocardiogram (ECG) and
Photoplethysmogram (PPG) signals have been used to predict
BP values. In this paper, we propose to estimate blood pressure
from PPG using Multi Task Gaussian Processes (MTGPs) and
compare with Artificial Neural networks (ANNs). Both MTGPs
and ANNs are evaluated on the clinical data obtained from
MIMIC Database. The performance of the proposed method is
found to be comparable or better than the existing methods of
computing BP from non-invasive data.

I. INTRODUCTION

In today’s world, a lot of importance is given to personal
healthcare. Due to infrequent monitoring, chronic hyperten-
sion often goes undetected which can be a cause for many
diseases including kidney failure, heart attack and stroke.
Invasive methods are known to measure blood pressure
continuously and accurately but they might cause infection.
The generally used non-invasive method is cuff-based which
does not prove to be convenient for injured or older people.
Cuff based technique occludes the flow of blood in arteries
during blood pressure measurement and causes an unpleasant
feeling and discomfort. Moreover, the cuff can sometimes
cause underestimation of systolic blood pressure because of
improper cuff size [1]. Therefore, there is an unmet need of
non-invasive, cuff-less technique to accurately measure blood
pressure.

Literature study shows that the vascular transit time [2],
pulse transit time [3]-[5], pulse arrival time [6] and pulse
wave velocity [7] can be used for non-invasive, cuff-less
blood pressure estimation. Blood Pressure can be measured
from the time difference between peaks of ECG and PPG,
or from PCG and PPG, or from the two PPG signals. The
idea of estimating BP from a single PPG signal was investi-
gated in [8]-[11]. Authors have reported a linear correlation
between BP and diastolic time obtained from PPG signal.

Apart from diastolic time, systolic time, 2/3 and 1/2 pulse
amplitude width are also considered potential parameters for
estimating BP. Many authors [3]-[10] have provided different
coefficients to estimate BP from different features obtained
from PPG signal, which give accurate results only on a
specific set of data. Coefficients have to be adjusted for
another set of inputs.

In order to remove this problem, a neural network has
been employed in [11] which takes twenty one features
of PPG signal as input and outputs systolic and diastolic
blood pressure. In [5], it was already shown that neural
networks provide better results than regression analysis in
estimating the blood pressure from pulse transit time. In
this paper, we propose to estimate the blood pressure using
Multi Task Gaussian Processes and compare with neural
network models with varying complexity. Data for training
and testing are extracted from Multiparameter Intelligent
Monitoring in Intensive Care (MIMIC) [12] database.

II. MULTI TASK GAUSSIAN PROCESS MODEL

The Gaussian Process (GP) framework is a really handy
tool for regression tasks in machine learning. Compared to
other regression methods, the basic advantage with GPs is
their ability to integrate prior knowledge like periodicity. We
briefly describe the Single Task Gaussian Process (STGP)
before moving to MTGPs. More details can be found in [16].
Let xn = {xi|i = 1, ..., n} and yn = {yi|i = 1, ..., n} be
the training data and labels respectively. The objective is to
learn a regression model y = f(x) + ε where f(x) is the
latent function and ε = N (0, σ2) a noise term. Noise term is
included as the data are often noisy as well. The function f
can be expressed as a probability distribution over functions,

yn = f(xn) ∼ GP(m(xn), k(xn,x
′
n)) (1)

where m(xn) is the mean function of the process and
k(xn,x

′
n) is the covariance function which models the

coupling between two values of xn. We can predict label
y∗ for an unknown data x∗ given xn and yn by computing
the conditional distribution p(y∗|x∗,xn,yn),

p(y∗|x∗,xn,yn) ∼ N (m∗, var∗) (2)

Assuming mean function m to be zero, the mean and
variance are given by

m∗ = k(xn, x∗)
T k(xn,xn)

−1yn (3)

var∗ = k(x∗, x∗)− k(xn, x∗)
T k(xn,xn)

−1k(xn, x∗) (4)

The covariance function helps us to include the prior knowl-
edge of the time series that we wish to model. There exists a
large class of covariance functions that we can use, described
in detail in [16]. Most commonly used ones are squared



exponential (SE), periodic (PER) and quasi-periodic (QP)
covariance functions:

kSE(r) = θ2s exp{−
r2

2θ2L
} (5)

kPER(r) = θ2s exp{−
sin2[(2π/θP )r]

2
} (6)

kQP (r) = θ2s exp{−
r2

2θ2L
} exp{− sin2[(2π/θP )r]

2
} (7)

where θS , θL and θP are hyperparameters which can be op-
timized by minimizing the negative log marginal likelihood
(− log(p(yn|xn))), r = ||x − x′|| denotes the Euclidean
distance between two data.

Multi Task Gaussian Processes (MTGP) can model multi-
ple correlated physiological time series simultaneously by
learning correlation between multiple signals sampled at
different frequencies and signal values available at differ-
ent time stamps. They have been used in the analysis of
physiological time series [15].

For MTGP, we analyse m tasks simultaneously using a
single GP model. We assume that X = {xji |j = 1, ...,m, i =
1, ..., nj} and Y = {yji |j = 1, ...,m, i = 1, ..., nj} are the
training indices and observations for m tasks, where task j
has nj number of training data. A label lj = j is added
to specify the association of index xji and observation yji to
task j.

In MTGP, we use two independent covariance functions
to model the correlation between tasks as well as temporal
behaviour of the tasks within a single GP.

kMTGP (x, x
′, l, l′) = kt(x, x′)× kc(l, l′) (8)

where kc and kt are the correlation and temporal covariance
function between {x, l} and {x′, l′} respectively.

The complete covariance matrix for all m tasks can be
written as,

KMTGP (X, l, θc, θt) = Kc(l, θc)⊗Kt(X, θt) (9)

where ⊗ is the Kronecker product, l = {j|j = 1, ...,m}, θc
and θt are vectors containing hyperparameters for Kc and Kt

respectively, Kc has a size of m×m, Kt and KMTGP has
a size of N×N where N =

∑m
j=1 n

j . Kc is the correlation
matrix which captures the correlation between different tasks
while Kt captures the temporal covariance functions within
a task.

Cholesky decomposition is used to construct a valid pos-
itive semidefinite covariance matrix Kc [17].

Kc = LLT , L =


θ1c 0 . . . 0
θ2c θ2c . . . 0
...

. . .
θk−m+1
c θk−m+2

c . . . θkc

 (10)

where k =
∑m

i=1 i is the number of correlation hyperparam-
eters. For uncorrelated tasks Kc will be an identity matrix.

The covariance function used is a combination of Matern
kernel, squared exponential and periodic covariance function.

k(x, x′) = kM (x, x′) + kQP (x, x
′) (11)

kM (x, x′) = θm{1 +
√
3r

θd
} exp{−

√
3r

θd
} (12)

kQP (x, x
′) = θ2s exp{−

r2

2θ2L
} exp{− sin2[(2π/θP )r]

2
}

(13)

where θm, θd, θs, θL and θP are hyperparameters which
are optimized by minimizing the negative log of marginal
likelihood, r = ||x− x′|| is the Euclidean distance between
x and x′. Similar to STGPs, prediction on the test data
{x∗, l∗} can be made by computing the conditional prob-
ability p(y∗|x∗, l∗,X,Y, l).

III. EXPERIMENTS

A. Data

Freely available MIMIC database [12] is used as the
source for the PPG signal and corresponding BP values. It
contains various physiological signals captured from thou-
sands of people. Most of them include ECG, PPG, BP and
many other signals which were recorded simultaneously at a
sampling frequency of 125 Hz. Besides healthy people, the
MIMIC database also contains signals from elderly people,
people with hypertension and other diseases. Only the signals
with both PPG and BP are extracted from this database,
figure 1 shows such an example. We select a random subset
of 100 patients from this dataset for our evaluation.

Fig. 1. Sample PPG signal and corresponding BP waveform from MIMIC
database



B. Preprocessing

A Photoplethsmograph (PPG) reflects the change in vol-
ume of the vascular blood with each cardiac cycle. Vital
components of this signal include amplitude of the signal,
width of systole and diastole, among other measurements.
Amplitude of PPG signal varies due to moving artifacts at
the time of acquisition of the signal. So, the amplitude cannot
be used as a feature for the estimation of BP. Preprocessing
is required to remove the base line wandering, physiological
noise, motion artifacts and optical measurement noise in the
PPG signal. Zero phase filtering is done with a 2nd order
Butterworth high pass IIR filter (cutoff frequency: 1 Hz).

The output of a FIR filter consists some group delay.
Hence, IIR filter is used because of its advantage of sharp
transition with a small number of coefficients but it has a
non-linear phase response which can distort the meaningful
components of the PPG signal. Zero phase filtering is used
to overcome this. The results of a zero phase filtering has
the following advantages:
• Zero phase distortion
• Squared magnitude of original filter transfer function
• Order gets doubled

Figure 2 shows the filtered signal along with the raw input.

Fig. 2. Top: Raw PPG signal, Bottom: Filtered PPG signal

C. Feature Extraction

Several features can be extracted from PPG signal to
estimate blood pressure. Diastolic time, systolic time, width
of 2/3 and 1/2 pulse amplitude are used in [9] while cardiac
period, peak height and peak width at 10% of pulse height
in [13]. In order to increase the accuracy of estimated BP
and to extract the maximum information from PPG signal,
several parameters are considered.

A total of 10 parameters are extracted. These set of
parameters provide accurate representation of a cardiac cycle
and can estimate the blood pressure correctly.

1) Systolic upstroke time
2) Diastolic time

Fig. 3. NN architecture for BP estimation

3) Cardiac Period
4) Ratio of diastolic to systolic time
5) Diastolic width at 1/2 of pulse height
6) Width at 1/2 of pulse height
7) Ratio of diastolic to systolic time at 1/2 of pulse height
8) Diastolic width at 2/3 of pulse height
9) Width at 2/3 of pulse height

10) Ratio of diastolic to systolic time at 2/3 of pulse height
The reference value of SBP and DBP is calculated as

the maximum and minimum value of the blood pressure
waveform in a cardiac cycle, respectively.

D. MTGP Model

To construct the MTGP, five tasks are considered −
systolic blood pressure, diastolic blood pressure, systolic
upstroke time, diastolic time and cardiac period. The datasets
of each patient are randomly partitioned in 75%:25% into
training and test sets respectively. Patient-specific MTGP is
constructed using the training set for each patient, where 5-
fold cross validation is used to report the final accuracy.

E. Neural Network

A multilayer feed-forward back propagation neural net-
work (NN) with N inputs, two hidden layers and two outputs
is used to estimate systolic and diastolic blood pressure.
Sigmoid function is used as the activation function and
Levenberg-Marquardt algorithm is used for learning the
weights of the neurons in the NN. Figure 3 shows the neural
network architecture.

Following experiments were carried out with varying
number of features of PPG signal in the input layer of neural
network to compare the performance of prior works.
• NN1: Linear regression is performed with diastolic time

because [9] shows that it has the highest correlation
with diastolic and systolic blood pressure as compared
to other features.

• NN3: Three features − systolic upstroke time, diastolic
time and cardiac period are used in the input layer of
NN.

• NN4: Ratio of diastolic to systolic upstroke time, sys-
tolic time, diastolic time and cardiac period are used as
input neurons.

• NN10: All the 10 features are used as input to the neural
network.



We construct patient specific neural network using
training set of each patient, where 5 fold cross validation is
used to report the final accuracy.

IV. RESULTS

The absolute error e is calculated for every heart beat as:

e = |BPest −BP | (14)

where BPest is the estimated SBP or DBP using NN or
MTGP, and BP is obtained from MIMIC database reference
value.

Table I shows the performance of the experiments men-
tioned above on the test set, presented as mean and standard
deviation of absolute error e between the reference and esti-
mated values. Clearly, Multi Task Gaussian process performs
better than other models.

TABLE I
PERFORMANCE OF MTGP AND NN

Method Systolic BP Diastolic BP
e[mmHg] e[mmHg]

NN1 7.73± 9.80 5.72± 7.91
NN3 4.75± 7.39 3.95± 7.31
NN4 4.81± 7.39 5.07± 7.63

NN10 3.91± 5.39 3.34± 5.67
MTGP 1.12± 1.06 0.82± 0.81

TABLE II
COMPARISON OF DIFFERENT NON-INVASIVE METHODS

Method Systolic BP Diastolic BP
e[mmHg] e[mmHg]

VTT Method[2] 4.42± 5.99 3.57± 4.50
21 feature NN[11] 3.80± 3.46 2.21± 2.09

MTGP 1.12± 1.06 0.82± 0.81

Table II shows the comparison of other non-invasive meth-
ods used for estimation of blood pressure. MTGP performs
better than the Vascular Transit Time (VTT) method used in
[2] and the 21 feature Neural Network Model [11].

According to the American National Standards of Associ-
ation for the Advancement of Medical Instrumentation [14],
the absolute mean error in blood pressure measurement must
be less than 5 mmHg and standard deviation must be less
than 8 mmHg. Results of our experiment (except NN1 i.e.
Linear Regression) clearly satisfies this standard requirement.

V. CONCLUSIONS

In this paper, blood pressure is estimated from features
of Photoplethysmograph (PPG) using Multi Task Gaussian
Processes and Neural Network (NN). Training and test data
used for both the methods are the same. Different number
of features have been used as input to the neural network.
In MTGP, five tasks have been included - systolic and
diastolic BP, and three features from PPG signal whose
correlation are found higher than other features. Both the

methods are evaluated on data of 100 patients extracted
from MIMIC database. The obtained results also fulfill the
standard requirements of the American National Standards
of Association for the Advancement of Medical Instrumen-
tation. MTGP gives better results in comparison with the
mentioned neural network models and also the other non-
invasive techniques used for BP estimation [2], [11].
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